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(the single real root whena, b, c are real) and

x2 = −1
2
(A + B) − a

3
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(A + B) − a
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− i

√
3

2
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(5.6.18)

(in that same case, a complex conjugate pair). Equations (5.6.13)–(5.6.16) are
arranged both to minimize roundoff error, and also (as pointed out by A.J. Glassman)
to ensure that no choice of branch for the complex cube root can result in the
spurious loss of a distinct root.

If you need to solve many cubic equations with only slightly different coeffi-
cients, it is more efficient to use Newton’s method (§9.4).

CITED REFERENCES AND FURTHER READING:

Weast, R.C. (ed.) 1967, Handbook of Tables for Mathematics, 3rd ed. (Cleveland: The Chemical
Rubber Co.), pp. 130–133.

Pachner, J. 1983, Handbook of Numerical Analysis Applications (New York: McGraw-Hill), §6.1.

McKelvey, J.P. 1984, American Journal of Physics, vol. 52, pp. 269–270; see also vol. 53, p. 775,
and vol. 55, pp. 374–375.

5.7 Numerical Derivatives

Imagine that you have a procedure which computes a functionf(x), and now
you want to compute its derivativef ′(x). Easy, right? The definition of the
derivative, the limit ash → 0 of

f ′(x) ≈ f(x + h) − f(x)
h

(5.7.1)

practically suggests the program: Pick a small valueh; evaluatef(x + h); you
probably havef(x) already evaluated, but if not, do it too; finally apply equation
(5.7.1). What more needs to be said?

Quite a lot, actually. Applied uncritically, the above procedure is almost
guaranteed to produce inaccurate results. Applied properly, it can be the right way
to compute a derivative only when the functionf is fiercely expensive to compute,
when you already have invested in computingf(x), and when, therefore, you want
to get the derivative in no more than a single additional function evaluation. In such
a situation, the remaining issue is to chooseh properly, an issue we now discuss:

There are two sources of error in equation (5.7.1), truncation error and roundoff
error. The truncation error comes from higher terms in the Taylor series expansion,

f(x + h) = f(x) + hf ′(x) +
1
2
h2f ′′(x) +

1
6
h3f ′′′(x) + · · · (5.7.2)

whence

f(x + h) − f(x)
h

= f ′ +
1
2
hf ′′ + · · · (5.7.3)
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The roundoff error has various contributions. First there is roundoff error inh:
Suppose, by way of an example, that you are at a pointx = 10.3 and you blindly
chooseh = 0.0001. Neitherx = 10.3 nor x + h = 10.30001 is a number with
an exact representation in binary; each is therefore represented with some fractional
error characteristic of the machine’s floating-point format,εm, whose value in single
precision may be∼ 10−7. The error in theeffective value ofh, namely the difference
betweenx + h andx as represented in the machine, is therefore on the order ofε mx,
which implies a fractional error inh of order∼ εmx/h ∼ 10−2! By equation (5.7.1)
this immediately implies at least the same large fractional error in the derivative.

We arrive at Lesson 1: Always chooseh so thatx+h andx differ by an exactly
representable number. This can usually be accomplished by the program steps

temp = x + h

h = temp− x
(5.7.4)

Some optimizing compilers, and some computers whose floating-point chips have
higher internal accuracy than is stored externally, can foil this trick; if so, it is usually
enough to call a dummy subroutinedonothing(temp) between the two equations
(5.7.4). This forcestemp into and out of addressable memory.

With h an “exact” number, the roundoff error in equation (5.7.1) ise r ∼
εf |f(x)/h|. Hereεf is the fractional accuracy with whichf is computed; for a
simple function this may be comparable to the machine accuracy,ε f ≈ εm, but for a
complicated calculation with additional sources of inaccuracy it may be larger. The
truncation error in equation (5.7.3) is on the order ofe t ∼ |hf ′′(x)|. Varyingh to
minimize the sumer + et gives the optimal choice ofh,

h ∼
√

εff

f ′′ ≈ √
εfxc (5.7.5)

wherexc ≡ (f/f ′′)1/2 is the “curvature scale” of the functionf , or “characteristic
scale” over which it changes. In the absence of any other information, one often
assumesxc = x (except nearx = 0 where some other estimate of the typicalx
scale should be used).

With the choice of equation (5.7.5), the fractional accuracy of the computed
derivative is

(er + et)/|f ′| ∼ √
εf (ff ′′/f ′2)1/2 ∼ √

εf (5.7.6)

Here the last order-of-magnitude equality assumes thatf , f ′, and f ′′ all share
the same characteristic length scale, usually the case. One sees that the simple
finite-difference equation (5.7.1) givesat best only the square root of the machine
accuracyεm.

If you can afford two function evaluations for each derivative calculation, then
it is significantly better to use the symmetrized form

f ′(x) ≈ f(x + h) − f(x − h)
2h

(5.7.7)
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In this case, by equation (5.7.2), the truncation error ise t ∼ h2f ′′′. The roundoff
errorer is about the same as before. The optimal choice ofh, by a short calculation
analogous to the one above, is now

h ∼
(

εff

f ′′′

)1/3

∼ (εf )1/3xc (5.7.8)

and the fractional error is

(er + et)/|f ′| ∼ (εf )2/3f2/3(f ′′′)1/3/f ′ ∼ (εf )2/3 (5.7.9)

which will typically be an order of magnitude (single precision) or two orders of
magnitude (double precision)better than equation (5.7.6). We have arrived at Lesson
2: Chooseh to bethe correct power ofεf or εm times a characteristic scalexc.

You can easily derive the correct powers for other cases[1]. For a function of
two dimensions, for example, and the mixed derivative formula

∂2f

∂x∂y
=

[f(x + h, y + h) − f(x + h, y − h)] − [f(x − h, y + h) − f(x − h, y − h)]
4h2

(5.7.10)
the correct scaling ish ∼ ε

1/4
f xc.

It is disappointing, certainly, that no simple finite-difference formula like
equation (5.7.1) or (5.7.7) gives an accuracy comparable to the machine accuracyε m,
or even the lower accuracy to whichf is evaluated,εf . Are there no better methods?

Yes, there are. All, however, involve exploration of the function’s behavior over
scales comparable toxc, plus some assumption of smoothness, or analyticity, so that
the high-order terms in a Taylor expansion like equation (5.7.2) have some meaning.
Such methods also involve multiple evaluations of the functionf , so their increased
accuracy must be weighed against increased cost.

The general idea of “Richardson’s deferred approach to the limit” is particularly
attractive. For numerical integrals, that idea leads to so-called Romberg integration
(for review, see§4.3). For derivatives, one seeks to extrapolate, toh → 0, the result
of finite-difference calculations with smaller and smaller finite values ofh. By the
use of Neville’s algorithm (§3.1), one uses each new finite-difference calculation to
produce both an extrapolation of higher order, and also extrapolations of previous,
lower, orders but with smaller scalesh. Ridders[2] has given a nice implementation
of this idea; the following program,dfridr, is based on his algorithm, modified by
an improved termination criterion. Input to the routine is a functionf (calledfunc),
a positionx, and alargest stepsizeh (more analogous to what we have calledx c

above than to what we have calledh). Output is the returned value of the derivative,
and an estimate of its error,err.

FUNCTION dfridr(func,x,h,err)
INTEGER NTAB
REAL dfridr,err,h,x,func,CON,CON2,BIG,SAFE
PARAMETER (CON=1.4,CON2=CON*CON,BIG=1.E30,NTAB=10,SAFE=2.)
EXTERNAL func

C USES func
Returns the derivative of a function func at a point x by Ridders’ method of polynomial
extrapolation. The value h is input as an estimated initial stepsize; it need not be small,
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but rather should be an increment in x over which func changes substantially. An estimate
of the error in the derivative is returned as err.
Parameters: Stepsize is decreased by CON at each iteration. Max size of tableau is set by
NTAB. Return when error is SAFE worse than the best so far.

INTEGER i,j
REAL errt,fac,hh,a(NTAB,NTAB)
if(h.eq.0.) pause ’h must be nonzero in dfridr’
hh=h
a(1,1)=(func(x+hh)-func(x-hh))/(2.0*hh)
err=BIG
do 12 i=2,NTAB Successive columns in the Neville tableau will go to smaller

stepsizes and higher orders of extrapolation.hh=hh/CON
a(1,i)=(func(x+hh)-func(x-hh))/(2.0*hh) Try new, smaller stepsize.
fac=CON2
do 11 j=2,i Compute extrapolations of various orders, requiring no new

function evaluations.a(j,i)=(a(j-1,i)*fac-a(j-1,i-1))/(fac-1.)
fac=CON2*fac
errt=max(abs(a(j,i)-a(j-1,i)),abs(a(j,i)-a(j-1,i-1)))

The error strategy is to compare each new extrapolation to one order lower, both at
the present stepsize and the previous one.

if (errt.le.err) then If error is decreased, save the improved answer.
err=errt
dfridr=a(j,i)

endif
enddo 11

if(abs(a(i,i)-a(i-1,i-1)).ge.SAFE*err)return
If higher order is worse by a significant factor SAFE, then quit early.

enddo 12

return
END

In dfridr, the number of evaluations offunc is typically 6 to 12, but is allowed
to be as great as 2×NTAB. As a function of inputh, it is typical for the accuracy
to getbetter ash is made larger, until a sudden point is reached where nonsensical
extrapolation produces early return with a large error. You should therefore choose
a fairly large value forh, but monitor the returned valueerr, decreasingh if it is
not small. For functions whose characteristicx scale is of order unity, we typically
take h to be a few tenths.

Besides Ridders’ method, there are other possible techniques. If your function
is fairly smooth, and you know that you will want to evaluate its derivative many
times at arbitrary points in some interval, then it makes sense to construct a
Chebyshev polynomial approximation to the function in that interval, and to evaluate
the derivative directly from the resulting Chebyshev coefficients. This method is
described in§§5.8–5.9, following.

Another technique applies when the function consists of data that is tabulated
at equally spaced intervals, and perhaps also noisy. One might then want, at each
point, to least-squaresfit a polynomial of some degreeM , using an additional
numbernL of points to the left and some numbernR of points to the right of each
desiredx value. The estimated derivative is then the derivative of the resulting
fitted polynomial. A very efficient way to do this construction is via Savitzky-Golay
smoothing filters, which will be discussed later, in§14.8. There we will give a
routine for getting filter coefficients that not only construct the fitting polynomial but,
in the accumulation of a single sum of data points times filter coefficients, evaluate
it as well. In fact, the routine given,savgol, has an argumentld that determines
which derivative of the fitted polynomial is evaluated. For the first derivative, the



184 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

appropriate setting isld=1, and the value of the derivative is the accumulated sum
divided by the sampling intervalh.
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5.8 Chebyshev Approximation

The Chebyshev polynomial of degreen is denotedTn(x), and is given by
the explicit formula

Tn(x) = cos(n arccosx) (5.8.1)

This may look trigonometric at first glance (and there is in fact a close relation
between the Chebyshev polynomials and the discrete Fourier transform); however
(5.8.1) can be combined with trigonometric identities to yield explicit expressions
for Tn(x) (see Figure 5.8.1),

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

· · ·
Tn+1(x) = 2xTn(x) − Tn−1(x) n ≥ 1.

(5.8.2)

(There also exist inverse formulas for the powers ofx in terms of theT n’s — see
equations 5.11.2-5.11.3.)

The Chebyshev polynomials are orthogonal in the interval[−1, 1] over a weight
(1 − x2)−1/2. In particular,

∫ 1

−1

Ti(x)Tj(x)√
1 − x2

dx =

{0 i �= j
π/2 i = j �= 0
π i = j = 0

(5.8.3)

The polynomialTn(x) hasn zeros in the interval[−1, 1], and they are located
at the points

x = cos
(

π(k − 1
2 )

n

)
k = 1, 2, . . . , n (5.8.4)


